
1

PHYSICAL INTELLIGENT SENSORS

Pavan Bandhil, Sanjeevi Chitikeshi and Ajay Mahajan♦
Department of Mechanical Engineering and Energy Processes

Southern Illinois University Carbondale
Carbondale, IL 62901

Fernando Figueroa

NASA
John C Stennis Space Center

Technology Development and Transfer
Code HA30, Bldg. 8306

Stennis Space Center, Mississippi 39529-6000

♦ Corresponding author

Abstract
This paper proposes the development of intelligent sensors as part of an integrated systems
approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the
traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-
assessment algorithms, communication protocols and evolutionary methodologies that allow
them to get better with time. Under a project being undertaken at the NASA’s Stennis Space
Center, an integrated framework is being developed for the intelligent monitoring of smart
elements. These smart elements can be sensors, actuators or other devices. The immediate
application is the monitoring of the rocket test stands, but the technology should be generally
applicable to the Integrated Systems Health Monitoring (ISHM) vision. This paper outlines
progress made in the development of intelligent sensors by describing the work done till date on
Physical Intelligent Sensors (PIS). The PIS discussed here consists of a thermocouple used to
read temperature in an analog form which is then converted into digital values. A
microprocessor collects the sensor readings and runs numerous embedded event detection
routines on the collected data and if any event is detected, it is reported, stored and sent to a
remote system through an Ethernet connection. Hence the output of the PIS is data coupled with
confidence factor in the reliability of the data which leads to information on the health of the
sensor at all times. All protocols are consistent with IEEE 1451.X standards. This work lays the
foundation for the next generation of smart devices that have embedded intelligence for
distributed decision making capabilities.

1. Introduction
Recent interest in smart sensor networks, and developments in technologies such as MEMS,
microelectronics, nanotechnology, communication networks and distributed computing, have
encouraged interest in the development of Integrated System Health Monitoring (ISHM)
systems. Hence the need for intelligent sensors as a critical component for Integrated System
Health Management (ISHM) is well recognized by now. An ISHM system is an example of an
intelligent sensing system application. The purpose of such a system is to detect and measure
certain quantities, and to use the information and knowledge obtained from the measured data,

RELEASED - Printed documents may be obsolete; validate prior to use.

2

and any prior knowledge, to make intelligent, forward-looking decisions and initiate actions.
Even the definition of what constitutes an intelligent sensor (or smart sensor) is well
documented and stems from an intuitive desire to get the best quality measurement data that
forms the basis of any complex health monitoring and/or management system. If the sensors, i.e.
the elements closest to the measurand, are unreliable then the whole system works with a
tremendous handicap. Hence, there has always been a desire to distribute intelligence down to
the sensor level, and give it the ability to assess its own health thereby improving the confidence
in the quality of the data at all times.

Sensors are a critical component of complex and sophisticated systems of today's technology
and their role is ever evolving in the smart systems of tomorrow. General theories to treat
intelligent sensor systems have been reported in the literature since the mid 80’s [1-3]. Parallel
work was done in industry where sensors have been developed with built in expert systems and
look-up tables [4, 5]. These sensors, called smart sensors, were described as simple sensing
devices with built-in intelligence. This intelligence included simple decision-making
capabilities, data processing, conflict resolution, communications, or distribution of information.
Figueroa and Mahajan [6] defined an autonomous sensor as a sensor that had an expert system
with extensive qualitative tools that allowed it to evolve with time into a better and more
efficient system. It differed, at least in philosophy, from the previous models by having a
dynamic knowledge base as well as embedded qualitative and analytical functions that gave it a
higher degree of operational independence, self-sufficiency and robustness. The underlying
philosophy behind the autonomous sensor was probably closest to Henderson's [7,8] logical
sensor models that also endeavored to give more problem-solving capabilities to the sensor, but
still stayed away from any type of dynamic models.

DeCoste [9] described a system, called DATMI that dynamically maintained a concise
representation of the space of local and global interpretations across time that were consistent
with the observations. Each of the observations was obtained from a sensor, and therefore the
number of observations was equal to the number of sensors in the control system. The truth of
the observations and the validity of the sensors were obtained by cross-referencing with possible
and impossible states of the system. DATMI was designed for a complete control system
comprising of multiple sensors and actuators, and was the inspiration for the formalized theory
called DATA-SIMLAMT (Dynamic Across Time Autonomous - Sensing, Interpretation, Model
Learning and Maintenance Theory) which was designed for and is applicable to each sensor in
the control system [10].

The key requirements of an advanced health monitoring system are that it should be able to
detect damaging events, characterize the nature, extent and seriousness of the damage, and
respond intelligently on whatever timescale is required, either to mitigate the effects of the
damage or to effect its repair. These requirements have been discussed in some detail in earlier
reports by Abbott [11-12]. According to Price, et al [13] a pure monitoring system is expected
only to report damage rather than to formulate a response, but it is preferable that the ultimate
objective of responding to damage be borne in mind from the outset. The statement of key
requirements serves to sub-divide the problem as follows:

i) Detection of damaging events: This requires some knowledge of the environment in
which the system will be operating, the threats it will face, and the development of
sensors and a strategy for using them to detect damage events well within the time

RELEASED - Printed documents may be obsolete; validate prior to use.

3

required for the system to respond. For events that require a rapid response, the best
solution will often involve the use of passive, embedded sensors.

ii) Characterization of the damage: This may or may not be a separate process from event
detection. It may use different sensors, or the same sensors may be used in a different
way. It is more likely to employ active sensors, which may be embedded in the structure
or could be mobile and autonomous.

iii) Prioritization of the seriousness of the damage: The first step of an intelligent response is
to determine the seriousness of the damage in terms of its ability to compromise the
mission of the vehicle, and consequently to determine the urgency (both relative and
absolute) with which a response is required.

iv) Identification of the cause of the damage: An intelligent system should be able to utilize
data from a vast array of sensors to deduce information about the events that have
occurred and the resulting damage, on a whole-of-vehicle basis.

v) Formulation of the response: The nature of the response will depend on a number of
factors such as the range of possible response mechanisms, the nature and severity of the
damage, the available response time, etc. A response may consist of a sequence of
actions. Major damage may demand an immediate “panic response”, such as the rapid
isolation of a whole section of the vehicle, followed by a more considered damage
evaluation and repair strategy.

vi) Execution of the response: In addition to repair, a holistic response may involve changes
to the flight or operational characteristics of the vehicle, either to mitigate the effects of
the damage or to assist in the avoidance of further damage.

The concept of PIS is nearly the same as described above [13] which states that it is most
important to recognize that the purpose of a health monitoring system is to detect damage, so it
must be able to function effectively in the presence of the damage. It should also be capable of
distinguishing between (inevitable) failures of the system itself and damage to the vehicle
structure. It must therefore be robust, adaptive, flexible, re-configurable and self-diagnosing.
These requirements have led to the adoption of an approach based on a multiagent system
(MAS) that consists of modular units that may be referred to as cells. These cells will not only
form the physical structure of a vehicle, but will also have sensing, processing and
communications capabilities.

The algorithms which run in the proposed physical intelligent sensors (PIS) are based upon the
concept given by Maul [14]. The techniques published in [15-17] are also helpful in learning the
implementation of the algorithms and the fundamental PIS structure. Some work has been done
on the PIS to detect a single fault but there was no provision to detect multiple faults [18] hence
this paper proposes to implement several event detection algorithms which can detect various
kinds of faults on a sensor. In recent years it can be seen there is a large demand for integrated
system health management systems (ISHM) [19-23] with applications in various fields like
monitoring the structural health, nuclear power industry, ship harbor, furnace, turbine engine,
thermal plants, etc.

This paper proposes the development of intelligent sensors as an integrated system approach.
Over the years some work has been done in this area, but most of the work has been for
customized applications. It is certainly now time to think of generic models for such types of
sensors that can be quickly fitted in to any application. Under a project being undertaken at the
Stennis Space Center (SSC), an integrated framework is being developed for the intelligent

RELEASED - Printed documents may be obsolete; validate prior to use.

4

monitoring of smart elements. These smart elements can be sensors, actuators or other devices.
The immediate application is the monitoring of the rocket test stands, but the technology should
be generally applicable to the ISHM vision. According to NASA as shown in Figure 1, from a
perspective of intelligence or autonomy, the ISHM system should provide the following
functions:
• System Monitoring
• Data Qualification
• Information Extraction
• Classification, Isolation and Diagnosis
• Mission Projection and Prognosis
• Communication and Information Transfer
• System Recovery and Response

Figure 1: Overall structure of health management system

This paper also outlines progress made in the development of intelligent sensors by describing
the following:
• A strategy for using a qualitative approach to process data and recognize problems in the data
and/or in the health of the sensor itself.
• The introduction of a condition assessment sheet for each sensor that functions as a report
card, and allows the system to make critical decisions during or after a run.
• The development of an integrated environment to run these intelligent sensors monitoring
real processes.

Health Management
System

Monitored System

Design

HM

 Processing
Requirements

HM

Interface
Requirements

HM

Performance
Requirements

 1. System
 definition

 2. Fault D
etection and isolation

 3. A
vailable rem

ediation

 1. A
vailable C

PU
 and M

em
ory

 2. C
om

m
unication and storage

 3. R
equired R

esponse tim
e

 1. V
ehicle Interface

 2. External Inform
ation

 ISH
M

 R
equirem

ents

1. Scalability/Evolution
2. System Robustness
3. False Alarms/Missed
 detection

Sensor
selection and

definition
HM Processing
Requirements

HM Higher

Level Information

RELEASED - Printed documents may be obsolete; validate prior to use.

5

2. Overall ISHM Structure
The governing Intelligent Systems Health Monitoring (ISHM) vision for an entire process needs
to be in an environment conducive to embedded intelligence and decision making. Such an
overall system for the a rocket test stand is being designed at Stennis Space Center, using the G2
environment (from Gensym, Inc.) but the scope of this work resides solely on the single sensor
level. All of the external systems connect to G2 through a bridging program written in C\C++.
The central system collects the data from the sensors and external programs and then applies it to
the model of the system contained in its knowledgebase. Since this paper deals primarily in the
single sensor realm a detailed discussion of the overall system will not be given.

Different types of sensors comprising a dynamic system will be instantiated as smart sensors
that will fit within an object oriented integrated framework that uses embedded knowledge to
monitor all the elements within the system. The concept of smart sensors may be extended to
other types of elements as well as processes. Each element will have a specification sheet (SS)
that will be fitted in to IEEE 1451.X standardized Transducer Electronic Data Sheets (TEDS),
and a new entity called the Condition Assessment Sheet (CAS) that will be fitted into the Health
Electronic Data Sheets (HEDS). The CAS shows the condition (or the health) of the element
and its confidence in its own working for the duration of the operation. This “health”
information is provided over and beyond the numeric output of the sensor. These smart elements
will have decision making capability derived from embedded knowledge bases and their own
intrinsic specification sheets.

Networks of elements with autonomous character will cooperate to perform as a system
composed of a collection of processes, each managing a collection of sensors, actuators, and
other components. The emphasis is on knowledge bases that support each element of the
hierarchy and the relationships between them. A key feature of the proposed framework is the
evaluation of condition for all elements performed both autonomously and using feedback from
other higher-order elements. The proposed effort will develop and validate a hierarchical
intelligent architecture composed of a system, processes, and sensors. Each element, as
mentioned before, will be a smart or intelligent entity, where they possess the capacity to
perform actions, assess those actions, and modify actions based on self assessment and external
assessment of results by others. Implementing this level of intelligence involves embedding
agents within each element that communicate, integrate, and adapt based on access to
knowledge bases and autonomous learning algorithms.

The smart elements are being developed in the MATLAB environment which is very conducive
for research purposes, while the system integration is being done using the G2 software, which
is designed to handle complex intelligent systems. G2 software has been chosen since it offers
the opportunity to develop layered behaviors analogous to the hierarchical autonomous
architecture we seek to develop. SSC provides an ideal test bed for this development effort due
to ready access to a broad range of rocket engine test stands, associated data acquisition systems,
and archival data. In addition, there is a large experienced user base, which can be drawn from
to develop, refine, and validate the architecture elements.

The ISHM is envisioned to have two types of sensors: Physical Intelligent Sensors (PIS) and
Virtual Intelligent Sensors (VIS). The PIS are actual sensors with embedded microprocessors,
while the VIS are virtual software-based sensors that function as PIS where it is physically
impossible or uneconomical to replace existing sensors with PIS. This paper concentrates on the
description of the PIS entities.

RELEASED - Printed documents may be obsolete; validate prior to use.

6

3. Physical Intelligent Sensor (PIS) Structure
The PIS or smart sensor is a combination of a sensing element, a data acquisition chip, a
microprocessor and an Ethernet connection that allows one to directly connect the sensor to an
Ethernet Bus. A PC is connected to the microprocessor to down load the software to the RAM
and also debug the program. Once the software is running, this PC is removed and all the data is
collected by a remote PC thru the Ethernet Bus. Several such smart sensors can be connected to
the same Ethernet Bus and controlled by the single remote PC.

Figure 2: Block diagram of the PIS system

Figure 2 is the block diagram of the PIS system. As shown in the block diagram the first block is
the sensor connected to the Analog to Digital Converter (ADC), where the analog data from the
sensor is converted into digital data. The ADC is then connected to the microprocessor which is
connected to a computer with a programming cable (RS-232). The program is downloaded onto
the microprocessor. In this current work ADC7794 is being used for Analog to Digital
conversion. It is a serial out converter. The microprocessor being used is the RCM3300 [24].
This microprocessor is compatible with Dynamic ‘C’ (8.61) software along with assembly
language. Hence, one can do the software coding directly in Dynamic ‘C’ (8.61), thus reducing
the complexity of the problem, and can see the results on the computer (a stdout window). One
can also send the programmed data from the microprocessor to a remote system using a TCP\IP
Protocols thru an Ethernet bus. The analog data from the sensor is given to the ADC. According
to the specifications of the ADC, if the analog data from the sensor exceeds 5V then the analog
voltage is scaled to 5V and is sent to the ADC. The same case is applied when the actual voltage
is dropped below 0V i.e. dropped to a negative voltage, then the voltage is scaled to 0V and is
sent to the ADC. The analog data is converted into digital data and is stored in the
microprocessor’s (RCM3300) Flash memory (512K) in the form of a file. This data forms the
input for the event detection routines embedded in the PIS.

A
D
C

S
E
N
S
O
R

PC1

R
E
M
O
T
E

PC2

M
I
C
R
O

PROCESSOR

RELEASED - Printed documents may be obsolete; validate prior to use.

7

4. PIS Hardware Description
The hardware used in the PIS consists of an ADC7794, a microprocessor RCM3300 and a PC
having windows 2000 and above operating system with a dynamic C 8.61 environment. Figure 3
shows the functional block diagram of the AD7794. The analog output from the sensor is given
to the multiplexer and then this output is sent to the buffer. Then in order to amplify the signal
from the sensor one has to pass this thru an operational amplifier due to the possibility of small
strength signals. These pre-conditioned signals are sent to the ADC where these analog signals
are sampled and are converted into digital signals which are then fed to the microprocessor. This
data is processed using the smart software program. The digital data can be available at the
(digital out) DOUT pin of the AD7794 chip. When the data is ready at the DOUT pin then the
SCLK pin goes high indicating to the microprocessor that the data is ready. The microprocessor
then accepts the data and makes the (digital in) DIN pin high indicating the data transfer is
complete. This process continues until there is data available at the DOUT pin.

Figure 3: Functional block diagram of the AD7794

The SCLK has a Schmitt-triggered input, making the interface suitable for opto-isolated
applications. The serial clock can be continuous with all the data transmitted in a continuous
train of pulses. Alternatively, it can be a non continuous clock with the information being
transmitted to or from the ADC in smaller batches of data. The internal clock can be made
available at the Clock In/Clock Out pin. Alternatively, the internal clock can be disabled and the
ADC can be driven by an external clock. This allows several ADCs to be driven from a common
clock, allowing simultaneous conversions to be performed. The Chip Select Input is an active
low logic input used to select the ADC. CS can be used to select the ADC in systems with more
than one device on the serial bus or as a frame synchronization signal in communicating with the
device. CS can be hardwired low, allowing the ADC to operate in a 3-wire mode with SCLK,
DIN, and DOUT used to interface with the device. The main interface part in the smart sensor is
the interfacing between the ADC and Microprocessor. The output data from the ADC is a 24bit
serial data, so there are three pin connections between the ADC and the microprocessor. The
following are descriptions of the pins:

RELEASED - Printed documents may be obsolete; validate prior to use.

8

i) Interrupt pin from the ADC indicating that the data is ready at the ADC for transfer
(SCLK pin from the ADC).

ii) Data transfer pin (DOUT/READY pin from ADC).
iii) Data acknowledgement pin from the microprocessor (DIN to the ADC).

When there is data ready at the ADC then the
interrupt pin is high indicating that the data is ready
for the microprocessor. When the microprocessor
receives the interrupt signal from the ADC then the
serial data is transferred to the microprocessor
through the data transfer pin of ADC. When the data
is transferred then the microprocessor sends a data
acknowledgement signal to the ADC indicating the
completion of the data transfer. As the data transfer
includes serial/parallel data transfer, the clock of the
microprocessor and ADC are synchronized, so that
there is a minimal probability of data loss. The clock
adjustment and the port pins (I/O) of microprocessor
are controlled by the software (Dynamic ‘C’) in the
microprocessor. The actual physical set-up of this
interface connection is shown in Figure 4.

The microprocessor and the PC1 are
connected by an RS232 programming
cable. The code that has to be stored on the
microprocessor has to be first written on
PC1 and is then downloaded to the
microprocessor. It is compiled and run by
using the SRAM (or) FLASH (each of
512KB) of the microprocessor. There is a
memory back up of 8MB in the form of
serial flash on the RCM3300 core module
to create files and to store data. This then
has to be transferred to the remote PC2 for
further analysis using TCP\IP protocols and
an Ethernet cable connected to the
microprocessor and the remote PC2. The
physical set-up is shown in Figure 5.

 ADC
0801
 (Can be
AD7794

MICROPR
OCESSOR
RCM3300

Figure 4: Interface between ADC and
the Microprocessor

MICROPROC

ESSOR
RCM3300

PC1

REMOTE
PC2

Figure 5: Sending results to the remote
computer

RELEASED - Printed documents may be obsolete; validate prior to use.

9

Rabbit Memory Organization
Typical Rabbit systems have two types of physical memory: flash memory and static RAM
memory.
a. Flash Memory: Flash memory in a Rabbit-based system may be small-sector type or large-
sector type. Small-sector memory typically has sectors of 128 to 1024 bytes. Individual sectors
may be separately erased and written. In large-sector memory the sectors are often 16K, 64K or
more. Small-sector memory provides better support for program development and debugging
while large-sector memory is less expensive and has faster access time. The best solution will
usually be to lay out a design to accept several different types of flash memory including the
flexible small-sector memories and the fast large-sector memories.
b. SRAM: Static RAM memory may or may not be battery-backed. If it is battery-backed it
retains its data when power is off. Static RAM chips typically used for Rabbit systems are 32K,
64K, 128K, 256K or 512K. When the memory is battery-backed power is supplied at 2-3V from
a backup battery. The shutdown circuitry must keep the chip select line high while preserving
memory contents with battery power.

A basic Rabbit system has two static memory chips, one flash memory chip and one RAM
memory chip. Additional static memory chips may be added. If an application requires storing a
lot of data in flash memory, another flash memory chip can be added (e.g. an external XD-Flash
Card) creating a system with three memory chips, i.e. two flash memory chips and one RAM
chip.

There are four main memory segments:

1. The Root Memory Segment: The root memory segment has a typical size of 24K. The
larger the root memory segment smaller the data segment and vice-versa. Root memory
segment address zero is always mapped to a 20-bit address zero. Usually the root memory
segment is mapped to flash memory since root code and root constants do not change
except when the system is reprogrammed. It may be mapped to RAM for debugging, or to
take advantage of the faster access time offered by RAM. The root memory segment holds
a mixture of codes and constants. C functions or assembly language programs that are
compiled to the root memory segment are interspersed with data constants. Data constants
are inserted between blocks of code. Data constants defined inside a C function are put
before the end of the code belonging to the function. Data constants defined outside of C
functions are stored as encountered in the source code. Except in small programs, the bulk
of the code is executed using the extended memory segment. But code in the root memory
segment operates slightly faster. Also the root memory segment has special properties that
make it better for some types of code.

2. The Data Segment: The data segment is mapped to RAM and contains C variables.
Typically it starts at 8K or above and ends at 52K (0xCFFF). Data allocation starts at or
near the top and proceeds in a downward direction. It is also possible to place executable
code in the data segment if it is copied from flash to the data segment. This can be
desirable for code that is self modifying, code to implement debugging aids or code that
controls write to the flash memory and cannot execute from flash. In some cases RAM
may require fewer wait states so code executes faster if copied to the RAM.

3. The Stack Segment: The stack segment normally is from 52K to 56K (0xD000-0xDFFF).
It is always mapped to RAM and holds the system stack. Multiple stacks may be

RELEASED - Printed documents may be obsolete; validate prior to use.

10

implemented by defining several stacks in the 4k space or by remapping the 4K space to
different locations in physical RAM memory, or by using both approaches. For example, if
16 stacks of 1k length are needed then 4 stacks can be placed in each 4k mapping and 4
different mappings for the window can be used.

4. The Extended Memory Segment: This 8K segment is from 56K to 64K (0xE000-0xFFFF)
and is used to execute extended code. It is also used by routines that manipulate data
located in extended memory. While executing code the mapping is shifted by 4K each time
the code passes the 60K point. Up to a megabyte of code can be efficiently executed by
moving the mapping of the 8K window using special instructions (long call, long jump and
long return) that are designed for this purpose.

The following is the process
followed for the building of code.
• The programmer edits the code

in the Dynamic ‘C’ IDE, and
saves the source file in a text
format.

• The Dynamic ‘C’ IDE compiles
the code. If needed, the
programmer can compile from
command line parameters.
Unlike most other development
environments, Dynamic ‘C’
prefers to compile every source
file and every library file for
each build. There is an option
that allows the user to define
precompiled functions.

• There is no separate linker.
Each build results in a single
binary file (with the “.BIN”
extension) and a map file (with
the “.MAP” extension).

• The Dynamic ‘C’ IDE
downloads the executable
binary file into the target system
using the programming cable.

Figure 6 shows the program flow
for the PIS and the execution of the
event detection algorithms.

 Figure 6: Program flow for the PIS

Define Global variables, constants; include
library files

function prototypes,

Check for storage
device

NO

Gives Error

Y
es

Clears it

Create a file in
flash NO

Gives Error

Select channel for data and store it in created
file

Select event detection routine

Outputs results in STDIO or can be sent to
remote system

RELEASED - Printed documents may be obsolete; validate prior to use.

11

5. PIS Implementation and Execution

The PIS as described in the previous sections has been implemented with a thermocouple and
has the capability to work in real time. The following routines obtained from NASA’s Glenn
Space Center have been implemented on the PIS:

A. Level Shift
B. Flat
C. Noise
D. Spike
E. Drift

To demonstrate the PIS capabilities an artificial data set was created with all the above
events/anomalies as shown in Figure 7. Letters A-E signify the routines recognizing the
events/anomalies and the corresponding PIS outputs are shown in this section.

Figure 7: Test data with multiple events detected by the PIS

A: Level Shift

The PIS output shows that the level shift has occurred at start time 19.0 (time units) with
a previous stable value 95.0 (temperature units) and stopped at 39.0 (time units) reaching
a stable value of 2.0 (temperature units).

RELEASED - Printed documents may be obsolete; validate prior to use.

12

B: FLAT

The PIS output shows that during the interval 71.0 (time units) to 100.0 (time units) the sensor
output is flat. This means that the sensor is dead or is not powered up. It can be seen from the
graph that there is no change in the sensor data in the observed period, in other words there is
even an absence of noise, hence the suspicious nature of the sensor output.

C: NOISE

The PIS output shows that excessive noise was detected at 101.0 (time units) and ended at 126.0
(time units). During this period the maximum average noise was of magnitude 13.2 (data units)
and minimum average was 1.6 (data units). The “noise” event detection routine returns a status
of 1 or 2, where 1 is “excessive noise” and 2 is “fine.”

RELEASED - Printed documents may be obsolete; validate prior to use.

13

D: Spike

The PIS output shows that there were two spikes detected in the given stream of data. The first
spike was detected at time 153.0 (time units) which lasted till 155.0 (time units). The time stamp
for the start of the spike is 2.0 (data units) and the spike had a magnitude of 48.0 (data units) i.e.
50.0 - 2.0 = 48.0. Similarly a second spike was detected at 184.0 (time units) with a magnitude of
-52.0 (data units).

E: Drift

The PIS output shows that a drift was detected that started at 230.0 (time units) from a value of
2.0 (data units) and ended at 260.0 (time units). It settled at a final new value of 22.0 (data units).

RELEASED - Printed documents may be obsolete; validate prior to use.

14

Conclusions
This paper has presented the development of intelligent sensors as part of an integrated systems
approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the
traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-
assessment algorithms, communication protocols and evolutionary methodologies that allow
them to get better with time. Under a project being undertaken at the NASA’s Stennis Space
Center, an integrated framework is being developed for the intelligent monitoring of smart
elements. This paper outlines progress made in the development of intelligent sensors by
describing the work done till date on Physical Intelligent Sensors (PIS). The PIS discussed here
consists of a thermocouple used to read temperature in an analog form which is then converted
into digital values. A microprocessor collects the sensor readings and runs numerous embedded
event detection routines on the collected data and if any event is detected, it is reported, stored
and sent to a remote system through an Ethernet connection. Hence the output of the PIS is data
coupled with confidence factor in the reliability of the data which leads to information on the
health of the sensor at all times. All protocols are consistent with IEEE 1451.X standards. This
work lays the foundation for the next generation of smart devices that have embedded
intelligence for distributed decision making capabilities.

Acknowledgements
 The authors would like to acknowledge the support of NASA for funding this work under
Grant NNS04AB796. The authors would also like to acknowledge the contributions of
researchers at Rowan University for providing the smart sensor prototype and NASA Glenn
Research Center for providing the event detection routines.

References
1. Ghani, N., 1988,"Sensor integration in ESPRIT," IFAC Proceedings, Karlsruhe, FDR, pp.

323-328.
2. Pinkava, J., 1989,"Towards a theory of sensory robotics," Robotica, Vol. 8, pp. 245-256.
3. Lozano-Perez, T., Mason, M. T., and Taylor, R., 1984, "Automatic synthesis of fine motion

strategies for robots," International Journal of Robotics Research, 3, No. 1, , pp. 2-24.
4. AbdelRahman, M. and Smith M. L., 1991 "The Impact of AI On Sensing Technology,"

SENSORS, pp. 16-22.
5. Studt, T., 1994,"Smart Sensors Widen Views on Measuring Data," R&D Magazine, pp. 18-

20.
6. Figueroa, F. and Mahajan, A., 1994, "Generic Model of an Autonomous Sensor,"

Mechatronics, Vol. 4, No. 3, pp. 295-315.
7. Henderson, T and Shilcrat, E., 1984, "Logical Sensor Systems," Journal of Robotic Systems,

1(2), pp. 169-193.
8. Henderson, T., Hansen, C. and Bhanu, B., 1985, "The Specification of Distributed Sensing

and Control," Journal of Robotic Systems, 2(4), pp. 387-396.
9. DeCoste, D., 1991,"Dynamic Across-Time Measurement and Interpretation," Artificial

Intelligence, Vol. 51, pp. 273-341.
10. Mahajan, A. and Figueroa, F., 1995, “Dynamic Across Time Autonomous - Sensing,

Interpretation, Model learning and Maintenance theory (DATA-SIMLAMT),” Mechatronics,
Vol. 5, No. 6, pp. 665-693.

RELEASED - Printed documents may be obsolete; validate prior to use.

15

11. Abbott, D., 2001. “Development and Evaluation of Sensor Concepts for Ageless Aerospace
Vehicles”, Report 1, CSIRO TIP Report no. TIPP 1516.

12. Abbott, D., “Development and Evaluation of Sensor Concepts for Ageless Aerospace
Vehicles”, Report 2, CSIRO TIP Report no. TIPP 1517.

13. Price, D.C., Scott, D.A., Edwards, G.C., Batten, A., Farmer, A.J., Hedley, M., Johnson,
M.E., Lewis, C.J., Poulton, G.T., Prokopenko, M., Valencia, P. and Wang, P., 2003. “An
Integrated Health Monitoring system for an Ageless Aerospace Vehicle” Proceedings of the
Structural Health Monitoring 2003: From Diagnostics & Prognostics to Structural Health
Management, ed. Fu-Kuo Chang, DEStech Publications (Lancaster, PA), pp. 310-8.

14. Maul, W., 2005 “ISHM/ NASA Session - Work and Technology at NASA-Algorithms for
Intelligent Elements” IEEE Sensors for Industry Conference.

15. Wang, P., Valencia, P., Prokopenko, M., Price, D.C. and Poulton, G.T., 2003. “Self-
Reconfigurable Sensor Networks in Ageless Aerospace Vehicles,” Proceedings of the 11th
International Conference on Advanced Robotics (ICAR-03), Coimbra, Portugal.

16. Lovatt, H., G. T. Poulton, D. C. Price, M. Prokopenko, P. Valencia, P. Wang. 2003. “Self-
Organising Impact Boundaries in Ageless Aerospace Vehicles,” In Proceedings of the 2nd
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS '03),
Melbourne, Australia, July 2003.

17. Newman, R.M. and Gaura, E.I., 2003 “Using very large arrays of intelligent sensors”
Proceedings of the 2003 IEEWASME international Conference on Advanced Intelligent
Mechartonics (AIM 2003).

18. Gaura, E.I., and Newman, R.M., 2003, “Intelligent sensing: Neural Network based health
diagnosis for sensor arrays,” Proceedings of the 2003 IEEE/ASME international Conference
on Advanced Intelligent Mechartonics (AIM 2003).

19. Minh-Duc L.E., Thi-Hoang-Hoa, Thi-Huong V.U., Duc-Vang L.E., Thi-Huong, 2003 “An
Automatic Control System Applying Decoupling Control Methodology for Ship Harbor
Maneuvers,” Proceedings of the 2003 IEEE/ASME international Conference on Advanced
Intelligent Mechartonics (AIM 2003).

20. Seliger, G., Kross, U. and Buchholz, A., 2003, “Efficient Maintenance Approach by On-
board Monitoring of Innovative Freight Wagon Bogie,” Proceedings of the 2003
IEEE/ASME international Conference Of Advanced Intelligent Mechatronics (AIM 2003)

21. Changfan, Z., Jing, H., Yonghong, L. and Yeqing, C., 2004, “Intelligent Temperature
Control of Ignition Furnace in Sintering Machine,” Proceedings of 2004 IEEE Conference
on Cybernetics and Intelligent Systems, Singapore.

22. Frank L. Greitzer, Lars J. Kangas, Kristine M. Terrones, Melody A. Maynard, Bary W.
Wilson, Ronald Pawlowski, Daniel R. Sisk, and Newton B. Brown, 1999, “Gas Turbine
Engine Health Monitoring and Prognostics”, Proceedings of the International Society of
Logistics (SOLE) 1999 Symposium, Las Vegas, Nevada.

23. McDonald, J.R., McArthur, S.D.J. and Burt, G.M., 2001, “Intelligent system applications for
power system control and management,” Computing & Control Engineering Journal,
Volume 12, Issue 2, April 2001, pp.85-91.

24. Hyder, K. and Perrin, B., 2005, “Embedded Systems Design Using the Rabbit 3000
Microprocessor,” Butterworth-Heinemann College, ISBN: 0750678720.

RELEASED - Printed documents may be obsolete; validate prior to use.

